Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______6______
/ \
___2__ ___8__
/ \ / \
0 _4 7 9
/ \
3 5
For example, the lowest common ancestor (LCA) of nodes 2 and 8 is 6. Another example is LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.
| 
					 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25  | 
						/**  * Definition for a binary tree node.  * struct TreeNode {  *     int val;  *     TreeNode *left;  *     TreeNode *right;  *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}  * };  */ class Solution { public:     TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {         if(root==NULL || p==NULL || q==NULL)              return NULL;         if((p->val >= root->val && q->val <= root ->val) || (p->val <= root->val && q->val >= root->val)) {             return root;         }         if(p->val > root->val && q->val > root->val) {             return lowestCommonAncestor(root->right, p, q);         }         if(p->val < root->val && q->val < root->val) {             return lowestCommonAncestor(root->left, p, q);         }     } };  |