[swift] LeetCode 832. Flipping an Image

Given a binary matrix A, we want to flip the image horizontally, then invert it, and return the resulting image.

To flip an image horizontally means that each row of the image is reversed.  For example, flipping [1, 1, 0] horizontally results in [0, 1, 1].

To invert an image means that each 0 is replaced by 1, and each 1 is replaced by 0. For example, inverting [0, 1, 1] results in [1, 0, 0].

Example 1:

Input: [[1,1,0],[1,0,1],[0,0,0]]
Output: [[1,0,0],[0,1,0],[1,1,1]]
Explanation: First reverse each row: [[0,1,1],[1,0,1],[0,0,0]].
Then, invert the image: [[1,0,0],[0,1,0],[1,1,1]]

Example 2:

Input: [[1,1,0,0],[1,0,0,1],[0,1,1,1],[1,0,1,0]]
Output: [[1,1,0,0],[0,1,1,0],[0,0,0,1],[1,0,1,0]]
Explanation: First reverse each row: [[0,0,1,1],[1,0,0,1],[1,1,1,0],[0,1,0,1]].
Then invert the image: [[1,1,0,0],[0,1,1,0],[0,0,0,1],[1,0,1,0]]

Notes:

1 <= A.length = A[0].length <= 20
0 <= A[i][j] <= 1

[swift] LeetCode 804. Unique Morse Code Words

International Morse Code defines a standard encoding where each letter is mapped to a series of dots and dashes, as follows: "a"maps to ".-""b" maps to "-...""c" maps to "-.-.", and so on.

For convenience, the full table for the 26 letters of the English alphabet is given below:

Now, given a list of words, each word can be written as a concatenation of the Morse code of each letter. For example, “cab” can be written as “-.-.-….-“, (which is the concatenation “-.-.” + “-…” + “.-“). We’ll call such a concatenation, the transformation of a word.

Return the number of different transformations among all words we have.

Note:

  • The length of words will be at most 100.
  • Each words[i] will have length in range [1, 12].
  • words[i] will only consist of lowercase letters.

[swift] LeetCode 709. To Lower Case

Implement function ToLowerCase() that has a string parameter str, and returns the same string in lowercase.

Example 1:

Example 2:

Example 3:


[swift] LeetCode 695. Max Area of Island

Given a non-empty 2D array grid of 0’s and 1’s, an island is a group of 1’s (representing land) connected 4-directionally (horizontal or vertical.) You may assume all four edges of the grid are surrounded by water.

Find the maximum area of an island in the given 2D array. (If there is no island, the maximum area is 0.)

Example 1:
[[0,0,1,0,0,0,0,1,0,0,0,0,0],
[0,0,0,0,0,0,0,1,1,1,0,0,0],
[0,1,1,0,1,0,0,0,0,0,0,0,0],
[0,1,0,0,1,1,0,0,1,0,1,0,0],
[0,1,0,0,1,1,0,0,1,1,1,0,0],
[0,0,0,0,0,0,0,0,0,0,1,0,0],
[0,0,0,0,0,0,0,1,1,1,0,0,0],
[0,0,0,0,0,0,0,1,1,0,0,0,0]]
Given the above grid, return 6. Note the answer is not 11, because the island must be connected 4-directionally.
Example 2:
[[0,0,0,0,0,0,0,0]]
Given the above grid, return 0.
Note: The length of each dimension in the given grid does not exceed 50.