Suppose that all the keys in a binary tree are distinct positive integers. A unique binary tree can be determined by a given pair of postorder and inorder traversal sequences. And it is a simple standard routine to print the numbers in level-order. However, if you think the problem is too simple, then you are too naive. This time you are supposed to print the numbers in “zigzagging order” — that is, starting from the root, print the numbers level-by-level, alternating between left to right and right to left. For example, for the following tree you must output: 1 11 5 8 17 12 20 15.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (<= 30), the total number of nodes in the binary tree. The second line gives the inorder sequence and the third line gives the postorder sequence. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print the zigzagging sequence of the tree in a line. All the numbers in a line must be separated by exactly one space, and there must be no extra space at the end of the line.
Sample Input:
8
12 11 20 17 1 15 8 5
12 20 17 11 15 8 5 1
Sample Output:
1 11 5 8 17 12 20 15
题目大意:给出一个树的中序和后序遍历结果,求它的Z字型层序遍历,也就是偶数层从右往左,奇数层从左往右遍历~
分析:分为3步:1.根据中序和后序建树 保存在tree二维数组中,比如:tree[i][0] = val表示post[i]的左孩子是post[val],tree[i][1] = val表示post[i]的右孩子是post[val]~
2.进行广度优先搜索,将树从根结点开始所有结点层序遍历,保存在result二维数组中,比如:result[i]保存第i层所有结点的序列~
3.进行z字型输出,根据当前层号的奇偶性分别从左往右、从右往左遍历输出~
1. dfs:因为post(后序)是按照左、右、根的顺序遍历的,所以从右往左,最右边的肯定是根结点~所以postRight是当前子树的根结点的下标,将它的赋值给index,并继续dfs tree[index][0]和tree[index][1]~
根据post[postRight]的结点在in里面的下标位置i,可以得到i的左边是左子树,即inLeft 到 i – 1,右边是右子树:i + 1 到 inRight。而对于post来说,根据左子树的结点个数i – inLeft可以得到[postLeft, postLeft + (i – inLeft) – 1]是post中左子树的范围,[postLeft + (i – inLeft), postRight – 1]是post中右子树的范围~
2.广度优先搜索,采用队列q,q中保存的是node结点,node.index表示当前节点在post中的下标,node.depth表示当前结点在树中的层数~
3.当 i % 2 == 0的时候倒序输出,否则正序输出~
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
#include <iostream> #include <vector> #include <queue> using namespace std; vector<int> in, post, result[35]; int n, tree[35][2], root; struct node { int index, depth; }; void dfs(int &index, int inLeft, int inRight, int postLeft, int postRight) { if (inLeft > inRight) return; index = postRight; int i = 0; while (in[i] != post[postRight]) i++; dfs(tree[index][0], inLeft, i - 1, postLeft, postLeft + (i - inLeft) - 1); dfs(tree[index][1], i + 1, inRight, postLeft + (i - inLeft), postRight - 1); } void bfs() { queue<node> q; q.push(node{root, 0}); while (!q.empty()) { node temp = q.front(); q.pop(); result[temp.depth].push_back(post[temp.index]); if (tree[temp.index][0] != 0) q.push(node{tree[temp.index][0], temp.depth + 1}); if (tree[temp.index][1] != 0) q.push(node{tree[temp.index][1], temp.depth + 1}); } } int main() { cin >> n; in.resize(n + 1), post.resize(n + 1); for (int i = 1; i <= n; i++) cin >> in[i]; for (int i = 1; i <= n; i++) cin >> post[i]; dfs(root, 1, n, 1, n); bfs(); printf("%d", result[0][0]); for (int i = 1; i < 35; i++) { if (i % 2 == 1) { for (int j = 0; j < result[i].size(); j++) printf(" %d", result[i][j]); } else { for (int j = result[i].size() - 1; j >= 0; j--) printf(" %d", result[i][j]); } } return 0; } |
❤ 点击这里 -> 订阅《PAT | 蓝桥 | LeetCode学习路径 & 刷题经验》by 柳婼