L2-027 名人堂与代金券-PAT团体程序设计天梯赛GPLT

对于在中国大学MOOC学习“数据结构”课程的学生,想要获得一张合格证书,总评成绩必须达到 60 分及以上,并且有另加福利:总评分在 [G, 100] 区间内者,可以得到 50 元 PAT 代金券;在 [60, G) 区间内者,可以得到 20 元PAT代金券。全国考点通用,一年有效。同时任课老师还会把总评成绩前 K 名的学生列入课程“名人堂”。本题就请你编写程序,帮助老师列出名人堂的学生,并统计一共发出了面值多少元的 PAT 代金券。

输入格式:
输入在第一行给出 3 个整数,分别是 N(不超过 10 000 的正整数,为学生总数)、G(在 (60,100) 区间内的整数,为题面中描述的代金券等级分界线)、K(不超过 100 且不超过 N 的正整数,为进入名人堂的最低名次)。接下来 N 行,每行给出一位学生的账号(长度不超过15位、不带空格的字符串)和总评成绩(区间 [0, 100] 内的整数),其间以空格分隔。题目保证没有重复的账号。

输出格式:
首先在一行中输出发出的 PAT 代金券的总面值。然后按总评成绩非升序输出进入名人堂的学生的名次、账号和成绩,其间以 1 个空格分隔。需要注意的是:成绩相同的学生享有并列的排名,排名并列时,按账号的字母序升序输出。

输入样例:
10 80 5
cy@zju.edu.cn 78
cy@pat-edu.com 87
1001@qq.com 65
uh-oh@163.com 96
test@126.com 39
anyone@qq.com 87
zoe@mit.edu 80
jack@ucla.edu 88
bob@cmu.edu 80
ken@163.com 70

输出样例:
360
1 uh-oh@163.com 96
2 jack@ucla.edu 88
3 anyone@qq.com 87
3 cy@pat-edu.com 87
5 bob@cmu.edu 80
5 zoe@mit.edu 80

分析:给每个大于60分的学生发20块,如果还有人同时大于G,在发30块。把所有学生生排序后,重新排名。第一个学生为第一名,以后的学生如果分数和前一个学生并列,他的名次和前一个同学名次一样,否则他的名次为下标加一

 

L2-026 小字辈-PAT团体程序设计天梯赛GPLT

本题给定一个庞大家族的家谱,要请你给出最小一辈的名单。

输入格式:
输入在第一行给出家族人口总数 N(不超过 100 000 的正整数) —— 简单起见,我们把家族成员从 1 到 N 编号。随后第二行给出 N 个编号,其中第 i 个编号对应第 i 位成员的父/母。家谱中辈分最高的老祖宗对应的父/母编号为 -1。一行中的数字间以空格分隔。

输出格式:
首先输出最小的辈分(老祖宗的辈分为 1,以下逐级递增)。然后在第二行按递增顺序输出辈分最小的成员的编号。编号间以一个空格分隔,行首尾不得有多余空格。

输入样例:
9
2 6 5 5 -1 5 6 4 7

输出样例:
4
1 9

分析:广度优先搜索最长路径问题(深搜可能会超时),老祖宗的父母即root的id用0表示 ,队列中的结构体成员分别是,人的编号和所处层数。

 

L2-025 分而治之-PAT团体程序设计天梯赛GPLT

分而治之,各个击破是兵家常用的策略之一。在战争中,我们希望首先攻下敌方的部分城市,使其剩余的城市变成孤立无援,然后再分头各个击破。为此参谋部提供了若干打击方案。本题就请你编写程序,判断每个方案的可行性。

输入格式:
输入在第一行给出两个正整数 N 和 M(均不超过10 000),分别为敌方城市个数(于是默认城市从 1 到 N 编号)和连接两城市的通路条数。随后 M 行,每行给出一条通路所连接的两个城市的编号,其间以一个空格分隔。在城市信息之后给出参谋部的系列方案,即一个正整数 K (<= 100)和随后的 K 行方案,每行按以下格式给出:
Np v[1] v[2] … v[Np]
其中 Np 是该方案中计划攻下的城市数量,后面的系列 v[i] 是计划攻下的城市编号。

输出格式:
对每一套方案,如果可行就输出“YES”,否则输出“NO”。

输入样例:
10 11
8 7
6 8
4 5
8 4
8 1
1 2
1 4
9 8
9 1
1 10
2 4
5
4 10 3 8 4
6 6 1 7 5 4 9
3 1 8 4
2 2 8
7 9 8 7 6 5 4 2

输出样例:
NO
YES
YES
NO
NO

分析:存图用邻接表存,aa数组表示此城有兄弟城市(即有多少城市与之连接),a组为每次攻城后的次城有多少兄弟城,aa作为原始连接情况,不变,每次用的时候,复制到a上即可。每攻下一座城,次城兄弟成变成0,其兄弟城的兄弟城减少一个。最后检查,如果所有城市的兄弟城都小于零,则输出YES,否则输出NO。

 

L2-023 图着色问题-PAT团体程序设计天梯赛GPLT

图着色问题是一个著名的NP完全问题。给定无向图 G = (V, E),问可否用K种颜色为V中的每一个顶点分配一种颜色,使得不会有两个相邻顶点具有同一种颜色?

但本题并不是要你解决这个着色问题,而是对给定的一种颜色分配,请你判断这是否是图着色问题的一个解。

输入格式:

输入在第一行给出3个整数V(0 < V <= 500)、E(>= 0)和K(0 < K <= V),分别是无向图的顶点数、边数、以及颜色数。顶点和颜色都从1到V编号。随后E行,每行给出一条边的两个端点的编号。在图的信息给出之后,给出了一个正整数N(<= 20),是待检查的颜色分配方案的个数。随后N行,每行顺次给出V个顶点的颜色(第i个数字表示第i个顶点的颜色),数字间以空格分隔。题目保证给定的无向图是合法的(即不存在自回路和重边)。

输出格式:

对每种颜色分配方案,如果是图着色问题的一个解则输出“Yes”,否则输出“No”,每句占一行。

输入样例:
6 8 3
2 1
1 3
4 6
2 5
2 4
5 4
5 6
3 6
4
1 2 3 3 1 2
4 5 6 6 4 5
1 2 3 4 5 6
2 3 4 2 3 4

输出样例:
Yes
Yes
No
No

分析:给出无向图,和颜色的数量k,求是否给出的颜色数量==k,并且任意两个点之间颜色都不同。
依次判断每一个点是否和周围的点颜色相同,出现一次,就立刻得出结果“No”,如果一次都没出现,结果为“Yes”。
判断给出的颜色个数的时候用set方便(本题数据规模不大,不会对运行时间影响太大)。