L1-014. 简单题-PAT团体程序设计天梯赛GPLT

这次真的没骗你 —— 这道超级简单的题目没有任何输入。

你只需要在一行中输出事实:“This is a simple problem.”就可以了。 

L1-005. 考试座位号-PAT团体程序设计天梯赛GPLT

每个PAT考生在参加考试时都会被分配两个座位号,一个是试机座位,一个是考试座位。正常情况下,考生在入场时先得到试机座位号码,入座进入试机状态后,系统会显示该考生的考试座位号码,考试时考生需要换到考试座位就座。但有些考生迟到了,试机已经结束,他们只能拿着领到的试机座位号码求助于你,从后台查出他们的考试座位号码。

输入格式:

输入第一行给出一个正整数N(<=1000),随后N行,每行给出一个考生的信息:“准考证号 试机座位号 考试座位号”。其中准考证号由14位数字组成,座位从1到N编号。输入保证每个人的准考证号都不同,并且任何时候都不会把两个人分配到同一个座位上。

考生信息之后,给出一个正整数M(<=N),随后一行中给出M个待查询的试机座位号码,以空格分隔。

输出格式:

对应每个需要查询的试机座位号码,在一行中输出对应考生的准考证号和考试座位号码,中间用1个空格分隔。

输入样例:
4
10120150912233 2 4
10120150912119 4 1
10120150912126 1 3
10120150912002 3 2
2
3 4
输出样例:
10120150912002 2
10120150912119 1

 

L1-004. 计算摄氏温度-PAT团体程序设计天梯赛GPLT

给定一个华氏温度F,本题要求编写程序,计算对应的摄氏温度C。计算公式:C = 5*(F-32)/9。题目保证输入与输出均在整型范围内。

输入格式:
输入在一行中给出一个华氏温度。

输出格式:
在一行中按照格式“Celsius = C”输出对应的摄氏温度C的整数值。

输入样例:
150
输出样例:
Celsius = 65 

L1-002. 打印沙漏-PAT团体程序设计天梯赛GPLT

本题要求你写个程序把给定的符号打印成沙漏的形状。例如给定17个“*”,要求按下列格式打印

*****
 ***
  *
 ***
*****
所谓“沙漏形状”,是指每行输出奇数个符号;各行符号中心对齐;相邻两行符号数差2;符号数先从大到小顺序递减到1,再从小到大顺序递增;首尾符号数相等。

给定任意N个符号,不一定能正好组成一个沙漏。要求打印出的沙漏能用掉尽可能多的符号。

输入格式:
输入在一行给出1个正整数N(<=1000)和一个符号,中间以空格分隔。

输出格式:
首先打印出由给定符号组成的最大的沙漏形状,最后在一行中输出剩下没用掉的符号数。

输入样例:
19 *
输出样例:
*****
 ***
  *
 ***
*****
2

L1-001. Hello World-PAT团体程序设计天梯赛GPLT

这道超级简单的题目没有任何输入。

你只需要在一行中输出著名短句“Hello World!”就可以了。  

L3-007. 天梯地图-PAT团体程序设计天梯赛GPLT

本题要求你实现一个天梯赛专属在线地图,队员输入自己学校所在地和赛场地点后,该地图应该推荐两条路线:一条是最快到达路线;一条是最短距离的路线。题目保证对任意的查询请求,地图上都至少存在一条可达路线。

输入格式:

输入在第一行给出两个正整数N(2 <= N <=500)和M,分别为地图中所有标记地点的个数和连接地点的道路条数。随后M行,每行按如下格式给出一条道路的信息:

V1 V2 one-way length time

其中V1和V2是道路的两个端点的编号(从0到N-1);如果该道路是从V1到V2的单行线,则one-way为1,否则为0;length是道路的长度;time是通过该路所需要的时间。最后给出一对起点和终点的编号。

输出格式:

首先按下列格式输出最快到达的时间T和用节点编号表示的路线:

Time = T: 起点 => 节点1 => … => 终点

然后在下一行按下列格式输出最短距离D和用节点编号表示的路线:

Distance = D: 起点 => 节点1 => … => 终点

如果最快到达路线不唯一,则输出几条最快路线中最短的那条,题目保证这条路线是唯一的。而如果最短距离的路线不唯一,则输出途径节点数最少的那条,题目保证这条路线是唯一的。

如果这两条路线是完全一样的,则按下列格式输出:

Time = T; Distance = D: 起点 => 节点1 => … => 终点

输入样例1:
10 15
0 1 0 1 1
8 0 0 1 1
4 8 1 1 1
5 4 0 2 3
5 9 1 1 4
0 6 0 1 1
7 3 1 1 2
8 3 1 1 2
2 5 0 2 2
2 1 1 1 1
1 5 0 1 3
1 4 0 1 1
9 7 1 1 3
3 1 0 2 5
6 3 1 2 1
5 3
输出样例1:
Time = 6: 5 => 4 => 8 => 3
Distance = 3: 5 => 1 => 3
输入样例2:
7 9
0 4 1 1 1
1 6 1 3 1
2 6 1 1 1
2 5 1 2 2
3 0 0 1 1
3 1 1 3 1
3 2 1 2 1
4 5 0 2 2
6 5 1 2 1
3 5
输出样例2:
Time = 3; Distance = 4: 3 => 2 => 5
分析:用两个Dijkstra + DFS。一个求最快路径(如果相同求路径的那条),一个求最短路径(如果相同求结点数最小的那条)~~求最快路径可以直接在Dijkstra里面求前驱结点Timepre数组~~~求最短路径因为要求结点数最小的那条,所以要用dispre的二维数组存储所有结点的最短路径,然后用DFS求出满足条件的结点数最小的那条~~

注意:
1.一开始最后一个测试用例“答案错误”,后来发现是自己在求最短路径(第二个答案distance)的时候忘记了temppath每一次深搜结束后的pop_back();
2.如果直接使用DFS的话,会导致最后一个测试用例“运行超时”~