L3-009 长城 (30 分)-PAT 团体程序设计天梯赛 GPLT

正如我们所知,中国古代长城的建造是为了抵御外敌入侵。在长城上,建造了许多烽火台。每个烽火台都监视着一个特定的地区范围。一旦某个地区有外敌入侵,值守在对应烽火台上的士兵就会将敌情通报给周围的烽火台,并迅速接力地传递到总部。

现在如图1所示,若水平为南北方向、垂直为海拔高度方向,假设长城就是依次相联的一系列线段,而且在此范围内的任一垂直线与这些线段有且仅有唯一的交点。

进一步地,假设烽火台只能建造在线段的端点处。我们认为烽火台本身是没有高度的,每个烽火台只负责向北方(图1中向左)瞭望,而且一旦有外敌入侵,只要敌人与烽火台之间未被山体遮挡,哨兵就会立即察觉。当然,按照这一军规,对于南侧的敌情各烽火台并不负责任。一旦哨兵发现敌情,他就会立即以狼烟或烽火的形式,向其南方的烽火台传递警报,直到位于最南侧的总部。

以图2中的长城为例,负责守卫的四个烽火台用蓝白圆点示意,最南侧的总部用红色圆点示意。如果红色星形标示的地方出现敌情,将被哨兵们发现并沿红色折线将警报传递到总部。当然,就这个例子而言只需两个烽火台的协作,但其他位置的敌情可能需要更多。

然而反过来,即便这里的4个烽火台全部参与,依然有不能覆盖的(黄色)区域。

另外,为避免歧义,我们在这里约定,与某个烽火台的视线刚好相切的区域都认为可以被该烽火台所监视。以图3中的长城为例,若A、B、C、D点均共线,且在D点设置一处烽火台,则A、B、C以及线段BC上的任何一点都在该烽火台的监视范围之内。

好了,倘若你是秦始皇的太尉,为不致出现更多孟姜女式的悲剧,如何在保证长城安全的前提下,使消耗的民力(建造的烽火台)最少呢?

输入格式:

输入在第一行给出一个正整数N(3 ≤ N ≤105),即刻画长城边缘的折线顶点(含起点和终点)数。随后N行,每行给出一个顶点的xy坐标,其间以空格分隔。注意顶点从南到北依次给出,第一个顶点为总部所在位置。坐标为区间[−109,109)内的整数,且没有重合点。

输出格式:

在一行中输出所需建造烽火台(不含总部)的最少数目。

输入样例:

10
67 32
48 -49
32 53
22 -44
19 22
11 40
10 -65
-1 -23
-3 31
-7 59

输出样例:

2

分析:根据题目易知,我们需要判断一共有几个凸出来的点。可以借助堆栈结构,从南到北判断每个点是否为凸出点,不是的话说明可以被前面某个烽火台观测到,直接弹出就不用管了。每次判断三个点,当前输入点l,上一个留在堆栈内的待观察点mid和再前面一个点r,如果直线lr的斜率是否大于等于(题目特殊规定)直线lmid的斜率,是的话说明不是凸出来点。当栈中存在大于2个的点时,表示mid点为烽火。top表示栈顶,X,Y中存储折线顶点坐标,tower为模拟堆栈数组,vis数组中记录某个点是否被标记为烽火台,函数isConcave判断是否是凹点或平行中点~