Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.
Note: The solution set must not contain duplicate quadruplets.
For example, given array S = [1, 0, -1, 0, -2, 2], and target = 0.
A solution set is:
[
[-1, 0, 0, 1],
[-2, -1, 1, 2],
[-2, 0, 0, 2]
]
题目大意:给一个整型数组,求abcd序列,使得a+b+c+d=target,返回所有不重复的abcd序列结果集合~
分析:对整型数组进行排序,先用i和j确定了前两个元素,然后用begin和end分别从j+1和最后一个元素n-1开始查找,根据sum的值移动begin和end指针,如果sum==target,就将结果放入结果集中;如果sum>target,将end向前移动一个,如果sum<target,就讲begin向后移动一个……为了避免重复,当i、j、begin、end和它们的前一个元素相同的时候,就跳过当前元素,直接移动到下一个~
| 
					 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36  | 
						class Solution { public:     vector<vector<int>> fourSum(vector<int>& nums, int target) {        vector<vector<int>> result;        int n = nums.size();        if(n < 4) return result;        sort(nums.begin(), nums.end());        vector<int> temp(4);        for(int i = 0; i < n - 3; i++) {             if(i != 0 && nums[i] == nums[i-1]) continue;            for(int j = i + 1; j < n - 2; j++) {                if(j != i + 1 && nums[j] == nums[j-1]) continue;                int begin = j + 1, end = n - 1;                while(begin < end) {                    int sum = nums[i] + nums[j] + nums[begin] + nums[end];                    if(sum == target) {                        temp[0] = nums[i];                        temp[1] = nums[j];                        temp[2] = nums[begin];                        temp[3] = nums[end];                        result.push_back(temp);                        begin++;                        end--;                        while(begin < end && nums[begin] == nums[begin-1]) begin++;                        while(begin < end && nums[end] == nums[end+1]) end--;                    } else if(sum > target) {                        end--;                    } else {                        begin++;                    }                }            }        }        return result;     } };  |