1104. Sum of Number Segments (20)-PAT甲级真题

Given a sequence of positive numbers, a segment is defined to be a consecutive subsequence. For example, given the sequence {0.1, 0.2, 0.3, 0.4}, we have 10 segments: (0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1, 0.2, 0.3, 0.4) (0.2) (0.2, 0.3) (0.2, 0.3, 0.4) (0.3) (0.3, 0.4) (0.4).

Now given a sequence, you are supposed to find the sum of all the numbers in all the segments. For the previous example, the sum of all the 10 segments is 0.1 + 0.3 + 0.6 + 1.0 + 0.2 + 0.5 + 0.9 + 0.3 + 0.7 + 0.4 = 5.0.

Input Specification:

Each input file contains one test case. For each case, the first line gives a positive integer N, the size of the sequence which is no more than 105. The next line contains N positive numbers in the sequence, each no more than 1.0, separated by a space.

Output Specification:

For each test case, print in one line the sum of all the numbers in all the segments, accurate up to 2 decimal places.

Sample Input:
4
0.1 0.2 0.3 0.4
Sample Output:
5.00

题目大意:给定一个正数数列,我们可以从中截取任意的连续的几个数,称为片段。例如,给定数列{0.1, 0.2, 0.3, 0.4},我们有(0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1, 0.2, 0.3, 0.4) (0.2) (0.2, 0.3) (0.2, 0.3, 0.4) (0.3) (0.3, 0.4) (0.4) 这10个片段。给定正整数数列,求出全部片段包含的所有的数之和。如本例中10个片段总和是0.1 + 0.3 + 0.6 + 1.0 + 0.2 + 0.5 + 0.9 + 0.3 + 0.7 + 0.4 = 5.0,在一行中输出该序列所有片段包含的数之和,精确到小数点后2位~

分析:将数列中的每个数字读取到temp中,假设我们选取的片段中包括temp,且这个片段的首尾指针分别为p和q,那么对于p,有i种选择,即12…i,对于q,有n-i+1种选择,即i, i+1, … n,所以p和q组合形成的首尾片段有i * (n-i+1)种,因为每个里面都会出现temp,所以temp引起的总和为temp * i * (n – i + 1);遍历完所有数字,将每个temp引起的总和都累加到sum中,最后输出sum的值~

【Update 2020-6-18】PS:题目更新了测试样例,导致之前的代码测试点2(第3个测试点)无法通过,研究到凌晨四点找错误原因…后来找到了给PAT这道题提反馈改测试用例的这位同学写的关于这道题的博客:https://blog.zhengrh.com/post/about-double/,感谢他让我找到了错误的原因,大概意思是:N比较大时,double类型的值多次累加导致的精度误差,因为输入为十进制小数,存储到double中时,计算机内部使用二进制表示,且计算机的字长有限,有的十进制浮点数使用二进制无法精确表示只能无限接近,在字长的限制下不可避免会产生舍入误差,这些细微的误差在N较大时多次累加会产生较大误差,所以建议不要使用double类型进行多次累加的精确计算,而是转为能够精确存储的整型。尝试把输入的double类型的值扩大1000倍后转为long long整型累加,同时使用long long类型保存sum的值,输出时除以1000.0转为浮点型再输出(相当于把小数点向后移动3位后再计算,避免double类型的小数部分存储不精确,多次累加后对结果产生影响)
但我觉得乘以1000也未必严谨,可能测试样例最小只有小数点后三位,如果测试样例变成小数点后四位、五位、六位,乘以1000相当于直接在小数点后三位处截断,而原本第四五六位经过多次累加进位后依然可能会引起精度问题,但如果乘以10000就会超出long long的值,我认为最精确的应该是截取到所有小数中最大的位数的那一位。。可能我的想法有疏漏,经过测试,测试样例确实没有超过小数点后三位,虽然修改为乘以1000后代码已经AC,但如果对测试样例稍加修改,可能又会导致不AC了…所以这道题先打个问号吧,我猜可能将来题目样例还会被修改…

 

1101. Quick Sort (25)-PAT甲级真题

There is a classical process named partition in the famous quick sort algorithm. In this process we typically choose one element as the pivot. Then the elements less than the pivot are moved to its left and those larger than the pivot to its right. Given N distinct positive integers after a run of partition, could you tell how many elements could be the selected pivot for this partition?

For example, given N = 5 and the numbers 1, 3, 2, 4, and 5. We have:

1 could be the pivot since there is no element to its left and all the elements to its right are larger than it;
3 must not be the pivot since although all the elements to its left are smaller, the number 2 to its right is less than it as well;
2 must not be the pivot since although all the elements to its right are larger, the number 3 to its left is larger than it as well;
and for the similar reason, 4 and 5 could also be the pivot.
Hence in total there are 3 pivot candidates.

Input Specification:

Each input file contains one test case. For each case, the first line gives a positive integer N (<= 105). Then the next line contains N distinct positive integers no larger than 109. The numbers in a line are separated by spaces.

Output Specification:

For each test case, output in the first line the number of pivot candidates. Then in the next line print these candidates in increasing order. There must be exactly 1 space between two adjacent numbers, and no extra space at the end of each line.

Sample Input:
5
1 3 2 4 5
Sample Output:
3
1 4 5

题目大意:快速排序中,我们通常采用某种方法取一个元素作为主元,通过交换,把比主元小的元素放到它的左边,比主元大的元素放到它的右边。  给定划分后的N个互不相同的正整数的排列,请问有多少个元素可能是划分前选取的主元?例如给定N = 5, 排列是1、3、2、4、5。则:
1的左边没有元素,右边的元素都比它大,所以它可能是主元;
尽管3的左边元素都比它小,但是它右边的2它小,所以它不能是主元;
尽管2的右边元素都比它大,但其左边的3比它大,所以它不能是主元;
类似原因,4和5都可能是主元。
因此,有3个元素可能是主元。
给N个数,第一行输出可能是主元的个数,第二行输出这些元素~

分析:对原序列sort排序,逐个比较,当当前元素没有变化并且它左边的所有值的最大值都比它小的时候就可以认为它一定是主元(很容易证明正确性的,毕竟无论如何当前这个数要满足左边都比他小右边都比他大,那它的排名【当前数在序列中处在第几个】一定不会变)~
如果硬编码就直接运行超时了…后来才想到这种方法~
一开始有一个测试点段错误,后来才想到因为输出时候v[0]是非法内存,改正后发现格式错误(好像可以说明那个第2个测试点是0个主元?…)然后加了最后一句printf(“\n”);才正确(难道是当没有主元的时候必须要输出空行吗…)

 

1061. Dating (20)-PAT甲级真题

Sherlock Holmes received a note with some strange strings: “Let’s date! 3485djDkxh4hhGE 2984akDfkkkkggEdsb s&hgsfdk d&Hyscvnm”. It took him only a minute to figure out that those strange strings are actually referring to the coded time “Thursday 14:04” — since the first common capital English letter (case sensitive) shared by the first two strings is the 4th capital letter ‘D’, representing the 4th day in a week; the second common character is the 5th capital letter ‘E’, representing the 14th hour (hence the hours from 0 to 23 in a day are represented by the numbers from 0 to 9 and the capital letters from A to N, respectively); and the English letter shared by the last two strings is ‘s’ at the 4th position, representing the 4th minute. Now given two pairs of strings, you are supposed to help Sherlock decode the dating time.

Input Specification:

Each input file contains one test case. Each case gives 4 non-empty strings of no more than 60 characters without white space in 4 lines.

Output Specification:

For each test case, print the decoded time in one line, in the format “DAY HH:MM”, where “DAY” is a 3-character abbreviation for the days in a week — that is, “MON” for Monday, “TUE” for Tuesday, “WED” for Wednesday, “THU” for Thursday, “FRI” for Friday, “SAT” for Saturday, and “SUN” for Sunday. It is guaranteed that the result is unique for each case.

Sample Input:
3485djDkxh4hhGE
2984akDfkkkkggEdsb
s&hgsfdk
d&Hyscvnm
Sample Output:
THU 14:04

题目大意:福尔摩斯接到一张奇怪的字条:“我们约会吧!3485djDkxh4hhGE 2984akDfkkkkggEdsb s&hgsfdk d&Hyscvnm”。大侦探很快就明白了,前面两字符串中第1对相同的大写英文字母(大小写有区分)是第4个字母D,代表星期四;第2对相同的字符是E,那是第5个英文字母,代表一天里的第14个钟头(于是一天的0点到23点由数字0到9、以及大写字母A到N表示);后面两字符串第1对相同的英文字母s出现在第4个位置(从0开始计数)上,代表第4分钟。现给定两对字符串,要求解码得到约会的时间~

分析:按照题目所给的方法找到相等的字符后判断即可,如果输出的时间不足2位数要在前面添0,即用%02d输出~

 

1070. Mooncake (25)-PAT甲级真题

Mooncake is a Chinese bakery product traditionally eaten during the Mid-Autumn Festival. Many types of fillings and crusts can be found in traditional mooncakes according to the regions culture. Now given the inventory amounts and the prices of all kinds of the mooncakes, together with the maximum total demand of the market, you are supposed to tell the maximum profit that can be made.
Note: partial inventory storage can be taken. The sample shows the following situation: given three kinds of mooncakes with inventory amounts being 180, 150, and 100 thousand tons, and the prices being 7.5, 7.2, and 4.5 billion yuans. If the market demand can be at most 200 thousand tons, the best we can do is to sell 150 thousand tons of the second kind of mooncake, and 50 thousand tons of the third kind. Hence the total profit is 7.2 + 4.5/2 = 9.45 (billion yuans).

Input Specification:
Each input file contains one test case. For each case, the first line contains 2 positive integers N (<=1000), the number of different kinds of mooncakes, and D (<=500 thousand tons), the maximum total demand of the market. Then the second line gives the positive inventory amounts (in thousand tons), and the third line gives the positive prices (in billion yuans) of N kinds of mooncakes. All the numbers in a line are separated by a space.

Output Specification:
For each test case, print the maximum profit (in billion yuans) in one line, accurate up to 2 decimal places.

Sample Input:
3 200
180 150 100
7.5 7.2 4.5
Sample Output:
9.45

题目大意:N表示月饼种类,D表示月饼的市场最大需求量,给出每种月饼的数量和总价,问根据市场最大需求量,这些月饼的最大销售利润为多少~

分析:首先根据月饼的总价和数量计算出每一种月饼的单价,然后将月饼数组按照单价从大到小排序,根据需求量need的大小,从单价最大的月饼开始售卖,将销售掉这种月饼的价格累加到result中,最后输出result即可~

1074. Reversing Linked List (25)-PAT甲级真题

Given a constant K and a singly linked list L, you are supposed to reverse the links of every K elements on L. For example, given L being 1→2→3→4→5→6, if K = 3, then you must output 3→2→1→6→5→4; if K = 4, you must output 4→3→2→1→5→6.

Input Specification:

Each input file contains one test case. For each case, the first line contains the address of the first node, a positive N (<= 105) which is the total number of nodes, and a positive K (<=N) which is the length of the sublist to be reversed. The address of a node is a 5-digit nonnegative integer, and NULL is represented by -1.
Then N lines follow, each describes a node in the format:
Address Data Next
where Address is the position of the node, Data is an integer, and Next is the position of the next node.

Output Specification:

For each case, output the resulting ordered linked list. Each node occupies a line, and is printed in the same format as in the input.

Sample Input:

00100 6 4
00000 4 99999
00100 1 12309
68237 6 -1
33218 3 00000
99999 5 68237
12309 2 33218

Sample Output:

00000 4 33218
33218 3 12309
12309 2 00100
00100 1 99999
99999 5 68237
68237 6 -1

分析:把地址为temp的数的数值存入data[temp]中,把temp的下一个结点的地址存入next[temp]中。
注意:不一定所有的输入的结点都是有用的,加个计数器sum

 

1085. Perfect Sequence (25)-PAT甲级真题

Given a sequence of positive integers and another positive integer p. The sequence is said to be a “perfect sequence” if M <= m * p where M and m are the maximum and minimum numbers in the sequence, respectively.
Now given a sequence and a parameter p, you are supposed to find from the sequence as many numbers as possible to form a perfect subsequence.

Input Specification:
Each input file contains one test case. For each case, the first line contains two positive integers N and p, where N (<= 105) is the number of integers in the sequence, and p (<= 109) is the parameter. In the second line there are N positive integers, each is no greater than 109.

Output Specification:
For each test case, print in one line the maximum number of integers that can be chosen to form a perfect subsequence.

Sample Input:
10 8
2 3 20 4 5 1 6 7 8 9
Sample Output:
8

题目大意:给定一个正整数数列,和正整数p,设这个数列中的最大值是M,最小值是m,如果M <= m * p,则称这个数列是完美数列。现在给定参数p和一些正整数,请你从中选择尽可能多的数构成一个完美数列。输入第一行给出两个正整数N(输入正数的个数)和p(给定的参数),第二行给出N个正整数。在一行中输出最多可以选择多少个数可以用它们组成一个完美数列

分析:简单题。首先将数列从小到大排序,设当前结果为result = 0,当前最长长度为temp = 0;从i = 0~n,j从i + result到n,【因为是为了找最大的result,所以下一次j只要从i的result个后面开始找就行了】每次计算temp若大于result则更新result,最后输出result的值~

【solution 2】如果熟练使用upper_bound(),可以使用以下解法解决问题(代码由Github用户littlesevenmo提供,在此表达感谢):