【01背包问题】:动态规划、回溯法和分支限界法 三种算法的对比与分析(时间复杂度方面)

动态规划(dp)

01背包问题的动态规划解法递归方程为:

此时时间复杂度为O(n)。

回溯法

使用回溯法解决01背包问题时,若可选物品为n个,则其解空间由长度为n的0-1向量组成。

此时时间复杂度为O(n2^n)。

分支限界法

使用分支限界法时,首先要对数据进行预处理,将物品重量价值按从小到大排列。分治限界法的缺点是占用内存大,效率不高。

时间复杂度为O(2^n)。

L3-001. 凑零钱-PAT团体程序设计天梯赛GPLT(01背包,动态规划)

韩梅梅喜欢满宇宙到处逛街。现在她逛到了一家火星店里,发现这家店有个特别的规矩:你可以用任何星球的硬币付钱,但是绝不找零,当然也不能欠债。韩梅梅手边有104枚来自各个星球的硬币,需要请你帮她盘算一下,是否可能精确凑出要付的款额。

输入格式:

输入第一行给出两个正整数:N(<=104)是硬币的总个数,M(<=102)是韩梅梅要付的款额。第二行给出N枚硬币的正整数面值。数字间以空格分隔。

输出格式:

在一行中输出硬币的面值 V1 <= V2 <= … <= Vk,满足条件 V1 + V2 + … + Vk = M。数字间以1个空格分隔,行首尾不得有多余空格。若解不唯一,则输出最小序列。若无解,则输出“No Solution”。

注:我们说序列{A[1], A[2], …}比{B[1], B[2], …}“小”,是指存在 k >= 1 使得 A[i]=B[i] 对所有 i < k 成立,并且 A[k] < B[k]。

输入样例1:
8 9
5 9 8 7 2 3 4 1
输出样例1:
1 3 5
输入样例2:
4 8
7 2 4 3
输出样例2:
No Solution

分析:01背包问题,因为要输出从小到大的排列,可以先把硬币面额从大到小排列,然后用bool类型的choice[i][j]数组dp[i][j]是否选取,如果选取了就令choice为true;然后进行01背包问题求解,如果最后求解的结果不是恰好等于所需要的价值的,就输出No Soultion,否则从choice[i][j]判断选取的情况,i从n到1表示从后往前看第i个物品的选取情况,j从m到0表示从容量m到0是否选取(j = j – w[i]),把选取情况压入arr数组中,最后输出arr数组

 

1068. Find More Coins (30)-PAT甲级真题(01背包)

Eva loves to collect coins from all over the universe, including some other planets like Mars. One day she visited a universal shopping mall which could accept all kinds of coins as payments. However, there was a special requirement of the payment: for each bill, she must pay the exact amount. Since she has as many as 104 coins with her, she definitely needs your help. You are supposed to tell her, for any given amount of money, whether or not she can find some coins to pay for it.

Input Specification:

Each input file contains one test case. For each case, the first line contains 2 positive numbers: N (<=104, the total number of coins) and M(<=102, the amount of money Eva has to pay). The second line contains N face values of the coins, which are all positive numbers. All the numbers in a line are separated by a space.

Output Specification:

For each test case, print in one line the face values V1 <= V2 <= … <= Vk such that V1 + V2 + … + Vk = M. All the numbers must be separated by a space, and there must be no extra space at the end of the line. If such a solution is not unique, output the smallest sequence. If there is no solution, output “No Solution” instead.

Note: sequence {A[1], A[2], …} is said to be “smaller” than sequence {B[1], B[2], …} if there exists k >= 1 such that A[i]=B[i] for all i < k, and A[k] < B[k].

Sample Input 1:
8 9
5 9 8 7 2 3 4 1
Sample Output 1:
1 3 5
Sample Input 2:
4 8
7 2 4 3
Sample Output 2:
No Solution
题目大意:用n个硬币买价值为m的东西,输出使用方案,使得正好几个硬币加起来价值为m。从小到大排列,输出最小的那个排列方案
分析:01背包问题,因为要输出从小到大的排列,可以先把硬币面额从大到小排列,然后用bool类型的choice[i][j]数组dp[i][j]是否选取,如果选取了就令choice为true;然后进行01背包问题求解,如果最后求解的结果不是恰好等于所需要的价值的,就输出No Soultion,否则从choice[i][j]判断选取的情况,i从n到1表示从后往前看第i个物品的选取情况,j从m到0表示从容量m到0是否选取(j = j – w[i]),把选取情况压入arr数组中,最后输出arr数组

 

蓝桥杯 ADV-144 算法提高 01背包

问题描述
  给定N个物品,每个物品有一个重量W和一个价值V.你有一个能装M重量的背包.问怎么装使得所装价值最大.每个物品只有一个.
输入格式
  输入的第一行包含两个整数n, m,分别表示物品的个数和背包能装重量。
  以后N行每行两个数Wi和Vi,表示物品的重量和价值
输出格式
  输出1行,包含一个整数,表示最大价值。
样例输入
3 5
2 3
3 5
4 7
样例输出
8
数据规模和约定
  1<=N<=200,M<=5000.

分析:dp[i][j]表示前i件物品选择部分装入体积为j的背包后,背包当前的最大价值,
一共有n件物品,那么dp[n][m]就是前n件物品选择部分装入容量为m的背包后,背包内物品的最大价值
1.当当前输入的物品体积大于背包容量,则不装入背包,dp[i][j] = dp[i-1][j];
2.当当前输入的物品体积小于等于背包容量,考虑装或者不装两种状态,取体积最大的那个:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w] + v);